Web API Fuzz Testing (ULTIMATE)
Web API fuzzing performs fuzz testing of API operation parameters. Fuzz testing sets operation parameters to unexpected values in an effort to cause unexpected behavior and errors in the API backend. This helps you discover bugs and potential security issues that other QA processes may miss.
We recommend that you use fuzz testing in addition to GitLab Secure's other security scanners and your own test processes. If you're using GitLab CI/CD, you can run fuzz tests as part your CI/CD workflow.
When Web API fuzzing runs
Web API fuzzing runs in the fuzz
stage of the CI/CD pipeline. To ensure API fuzzing scans the
latest code, your CI/CD pipeline should deploy changes to a test environment in one of the stages
preceding the fuzz
stage.
Note the following changes have been made to the API fuzzing template:
- In GitLab 14.0 and later, you must define a
fuzz
stage in your.gitlab-ci.yml
file. - In GitLab 13.12 and earlier, the API fuzzing template defines
build
,test
,deploy
, andfuzz
stages. Thefuzz
stage runs last by default. The predefined stages were deprecated, and removed from theAPI-Fuzzing.latest.gitlab-ci.yml
template. They will be removed in a future GitLab version.
If your pipeline is configured to deploy to the same web server on each run, running a pipeline while another is still running could cause a race condition in which one pipeline overwrites the code from another. The API to scan should be excluded from changes for the duration of a fuzzing scan. The only changes to the API should be from the fuzzing scanner. Any changes made to the API (for example, by users, scheduled tasks, database changes, code changes, other pipelines, or other scanners) during a scan could cause inaccurate results.
You can run a Web API fuzzing scan using the following methods:
- OpenAPI Specification - version 2, and 3.
- HTTP Archive (HAR)
- Postman Collection - version 2.0 or 2.1
Example projects using these methods are available:
- Example OpenAPI v2 Specification project
- Example HTTP Archive (HAR) project
- Example Postman Collection project
- Example GraphQL project
- Example SOAP project
Enable Web API fuzzing
Requirements:
-
One of the following web API types:
- REST API
- SOAP
- GraphQL
- Form bodies, JSON, or XML
-
One of the following assets to provide APIs to test:
- OpenAPI v2 or v3 API definition
- HTTP Archive (HAR) of API requests to test
- Postman Collection v2.0 or v2.1
WARNING: NEVER run fuzz testing against a production server. Not only can it perform any function that the API can, it may also trigger bugs in the API. This includes actions like modifying and deleting data. Only run fuzzing against a test server.
To enable Web API fuzzing:
-
Include the API fuzzing template in your
.gitlab-ci.yml
file. -
From GitLab 13.10 and later, use the Web API fuzzing configuration form.
-
For manual configuration instructions, see the respective section, depending on the API type:
-
Otherwise, see Web API fuzzing configuration form.
In GitLab 14.0 and later, API fuzzing configuration files must be in your repository's
.gitlab
directory instead of your repository's root.
Web API fuzzing configuration form
Introduced in GitLab 13.10.
WARNING: This feature might not be available to you. Check the version history note above for details.
The API fuzzing configuration form helps you create or modify your project's API fuzzing configuration. The form lets you choose values for the most common API fuzzing options and builds a YAML snippet that you can paste in your GitLab CI/CD configuration.
Configure Web API fuzzing with the configuration form
To generate an API Fuzzing configuration snippet:
- On the top bar, select Menu > Projects and find your project.
- On the left sidebar, select Security & Compliance > Configuration.
- In the API Fuzzing row, select Configure.
- Complete the form as needed. Read below for more information on available configuration options.
- Select Generate code snippet. A modal opens with the YAML snippet corresponding to the options you've selected in the form.
- Choose one of the following actions:
- To copy the snippet to your clipboard and be redirected to your project's
.gitlab-ci.yml
file, where you can paste the YAML configuration, select Copy code and open.gitlab-ci.yml
file. - To copy the snippet to your clipboard and close the modal, select Copy code only.
- To copy the snippet to your clipboard and be redirected to your project's
OpenAPI Specification
- Support for OpenAPI Specification v3.0 was introduced in GitLab 13.9.
- Support for OpenAPI Specification using YAML format was introduced in GitLab 14.0.
- Support for OpenAPI Specification v3.1 was introduced in GitLab 14.2.
The OpenAPI Specification (formerly the Swagger Specification) is an API description format for REST APIs. This section shows you how to configure API fuzzing using an OpenAPI Specification to provide information about the target API to test. OpenAPI Specifications are provided as a file system resource or URL. Both JSON and YAML OpenAPI formats are supported.
API fuzzing uses an OpenAPI document to generate the request body. When a request body is required, the body generation is limited to these body types:
application/x-www-form-urlencoded
multipart/form-data
application/json
Configure Web API fuzzing with an OpenAPI Specification
To configure API fuzzing in GitLab with an OpenAPI Specification:
-
Add the
fuzz
stage to your.gitlab-ci.yml
file. -
Include the
API-Fuzzing.gitlab-ci.yml
template in your.gitlab-ci.yml
file. -
Provide the profile by adding the
FUZZAPI_PROFILE
CI/CD variable to your.gitlab-ci.yml
file. The profile specifies how many tests are run. SubstituteQuick-10
for the profile you choose. For more details, see API fuzzing profiles.variables: FUZZAPI_PROFILE: Quick-10
-
Provide the location of the OpenAPI Specification. You can provide the specification as a file or URL. Specify the location by adding the
FUZZAPI_OPENAPI
variable. -
Provide the target API instance's base URL. Use either the
FUZZAPI_TARGET_URL
variable or anenvironment_url.txt
file.Adding the URL in an
environment_url.txt
file at your project's root is great for testing in dynamic environments. To run API fuzzing against an application dynamically created during a GitLab CI/CD pipeline, have the application persist its URL in anenvironment_url.txt
file. API fuzzing automatically parses that file to find its scan target. You can see an example of this in the Auto DevOps CI YAML.
Example .gitlab-ci.yml
file using an OpenAPI Specification:
stages:
- fuzz
include:
- template: API-Fuzzing.gitlab-ci.yml
variables:
FUZZAPI_PROFILE: Quick-10
FUZZAPI_OPENAPI: test-api-specification.json
FUZZAPI_TARGET_URL: http://test-deployment/
This is a minimal configuration for API Fuzzing. From here you can:
- Run your first scan.
- Add authentication.
- Learn how to handle false positives.
For details of API fuzzing configuration options, see Available CI/CD variables.
HTTP Archive (HAR)
The HTTP Archive format (HAR) is an archive file format for logging HTTP transactions. When used with the GitLab API fuzzer, HAR must contain records of calling the web API to test. The API fuzzer extracts all the requests and uses them to perform testing.
For more details, including how to create a HAR file, see HTTP Archive format.
WARNING: HAR files may contain sensitive information such as authentication tokens, API keys, and session cookies. We recommend that you review the HAR file contents before adding them to a repository.
Configure Web API fuzzing with a HAR file
To configure API fuzzing to use a HAR file:
-
Add the
fuzz
stage to your.gitlab-ci.yml
file. -
Include the
API-Fuzzing.gitlab-ci.yml
template in your.gitlab-ci.yml
file. -
Provide the profile by adding the
FUZZAPI_PROFILE
CI/CD variable to your.gitlab-ci.yml
file. The profile specifies how many tests are run. SubstituteQuick-10
for the profile you choose. For more details, see API fuzzing profiles.variables: FUZZAPI_PROFILE: Quick-10
-
Provide the location of the HAR specification. You can provide the specification as a file or URL. URL support was introduced in GitLab 13.10 and later. Specify the location by adding the
FUZZAPI_HAR
variable. -
The target API instance's base URL is also required. Provide it by using the
FUZZAPI_TARGET_URL
variable or anenvironment_url.txt
file.Adding the URL in an
environment_url.txt
file at your project's root is great for testing in dynamic environments. To run API fuzzing against an app dynamically created during a GitLab CI/CD pipeline, have the app persist its domain in anenvironment_url.txt
file. API fuzzing automatically parses that file to find its scan target. You can see an example of this in our Auto DevOps CI YAML.
Example .gitlab-ci.yml
file using a HAR file:
stages:
- fuzz
include:
- template: API-Fuzzing.gitlab-ci.yml
variables:
FUZZAPI_PROFILE: Quick-10
FUZZAPI_HAR: test-api-recording.har
FUZZAPI_TARGET_URL: http://test-deployment/
This is a minimal configuration for API fuzzing. From here you can:
- Run your first scan.
- Add authentication.
- Learn how to handle false positives.
For details of API fuzzing configuration options, see Available CI/CD variables.
Postman Collection
The Postman API Client is a popular tool that developers and testers use to call various types of APIs. The API definitions can be exported as a Postman Collection file for use with API Fuzzing. When exporting, make sure to select a supported version of Postman Collection: v2.0 or v2.1.
When used with the GitLab API fuzzer, Postman Collections must contain definitions of the web API to test with valid data. The API fuzzer extracts all the API definitions and uses them to perform testing.
WARNING: Postman Collection files may contain sensitive information such as authentication tokens, API keys, and session cookies. We recommend that you review the Postman Collection file contents before adding them to a repository.
Configure Web API fuzzing with a Postman Collection file
To configure API fuzzing to use a Postman Collection file:
-
Add the
fuzz
stage to your.gitlab-ci.yml
file. -
Include the
API-Fuzzing.gitlab-ci.yml
template in your.gitlab-ci.yml
file. -
Provide the profile by adding the
FUZZAPI_PROFILE
CI/CD variable to your.gitlab-ci.yml
file. The profile specifies how many tests are run. SubstituteQuick-10
for the profile you choose. For more details, see API fuzzing profiles.variables: FUZZAPI_PROFILE: Quick-10
-
Provide the location of the Postman Collection specification. You can provide the specification as a file or URL. URL support was introduced in GitLab 13.10 and later. Specify the location by adding the
FUZZAPI_POSTMAN_COLLECTION
variable. -
Provide the target API instance's base URL. Use either the
FUZZAPI_TARGET_URL
variable or anenvironment_url.txt
file.Adding the URL in an
environment_url.txt
file at your project's root is great for testing in dynamic environments. To run API fuzzing against an app dynamically created during a GitLab CI/CD pipeline, have the app persist its domain in anenvironment_url.txt
file. API fuzzing automatically parses that file to find its scan target. You can see an example of this in our Auto DevOps CI YAML.
Example .gitlab-ci.yml
file using a Postman Collection file:
stages:
- fuzz
include:
- template: API-Fuzzing.gitlab-ci.yml
variables:
FUZZAPI_PROFILE: Quick-10
FUZZAPI_POSTMAN_COLLECTION: postman-collection_serviceA.json
FUZZAPI_TARGET_URL: http://test-deployment/
This is a minimal configuration for API Fuzzing. From here you can:
- Run your first scan.
- Add authentication.
- Learn how to handle false positives.
For details of API fuzzing configuration options, see Available CI/CD variables.
Postman variables
Postman allows the developer to define placeholders that can be used in different parts of the requests. These placeholders are called variables, as explained in the Postman documentation, Using variables. You can use variables to store and reuse values in your requests and scripts. For example, you can edit the collection to add variables to the document:
You can then use the variables in sections such as URL, headers, and others:
Variables can be defined at different scopes (for example, Global, Collection, Environment, Local, and Data). In this example, they're defined at the Environment scope:
When you export a Postman collection, only Postman collection variables are exported into the Postman file. For example, Postman does not export environment-scoped variables into the Postman file.
By default, the API fuzzer uses the Postman file to resolve Postman variable values. If a JSON file
is set in a GitLab CI/CD variable FUZZAPI_POSTMAN_COLLECTION_VARIABLES
, then the JSON
file takes precedence to get Postman variable values.
Although Postman can export environment variables into a JSON file, the format is not compatible
with the JSON expected by FUZZAPI_POSTMAN_COLLECTION_VARIABLES
.
Here is an example of using FUZZAPI_POSTMAN_COLLECTION_VARIABLES
:
stages:
- fuzz
include:
- template: API-Fuzzing.gitlab-ci.yml
variables:
FUZZAPI_PROFILE: Quick-10
FUZZAPI_POSTMAN_COLLECTION: postman-collection_serviceA.json
FUZZAPI_TARGET_URL: http://test-deployment/
FUZZAPI_POSTMAN_COLLECTION_VARIABLES: variable-collection-dictionary.json
The file variable-collection-dictionary.json
is a JSON document. This JSON is an object with
key-value pairs for properties. The keys are the variables' names, and the values are the variables'
values. For example:
{
"base_url": "http://127.0.0.1/",
"token": "Token 84816165151"
}
API fuzzing configuration
The API fuzzing behavior can be changed through CI/CD variables.
From GitLab 13.12 and later, the default API fuzzing configuration file is .gitlab/gitlab-api-fuzzing-config.yml
. In GitLab 14.0 and later, API fuzzing configuration files must be in your repository's
.gitlab
directory instead of your repository's root.
Authentication
Authentication is handled by providing the authentication token as a header or cookie. You can provide a script that performs an authentication flow or calculates the token.
HTTP Basic Authentication
HTTP basic authentication
is an authentication method built in to the HTTP protocol and used in conjunction with
transport layer security (TLS).
To use HTTP basic authentication, two CI/CD variables are added to your .gitlab-ci.yml
file:
-
FUZZAPI_HTTP_USERNAME
: The username for authentication. -
FUZZAPI_HTTP_PASSWORD
: The password for authentication.
For the password, we recommended that you create a CI/CD variable
(for example, TEST_API_PASSWORD
) set to the password. You can create CI/CD variables from the
GitLab projects page at Settings > CI/CD, in the Variables section. Use that variable
as the value for FUZZAPI_HTTP_PASSWORD
:
stages:
- fuzz
include:
- template: API-Fuzzing.gitlab-ci.yml
variables:
FUZZAPI_PROFILE: Quick-10
FUZZAPI_HAR: test-api-recording.har
FUZZAPI_TARGET_URL: http://test-deployment/
FUZZAPI_HTTP_USERNAME: testuser
FUZZAPI_HTTP_PASSWORD: $TEST_API_PASSWORD
Bearer Tokens
Bearer tokens are used by several different authentication mechanisms, including OAuth2 and JSON Web
Tokens (JWT). Bearer tokens are transmitted using the Authorization
HTTP header. To use bearer
tokens with API fuzzing, you need one of the following:
- A token that doesn't expire
- A way to generate a token that lasts the length of testing
- A Python script that API fuzzing can call to generate the token
Token doesn't expire
If the bearer token doesn't expire, use the FUZZAPI_OVERRIDES_ENV
variable to provide it. This
variable's content is a JSON snippet that provides headers and cookies to add to API fuzzing's
outgoing HTTP requests.
Follow these steps to provide the bearer token with FUZZAPI_OVERRIDES_ENV
:
-
Create a CI/CD variable, for example
TEST_API_BEARERAUTH
, with the value{"headers":{"Authorization":"Bearer dXNlcm5hbWU6cGFzc3dvcmQ="}}
(substitute your token). You can create CI/CD variables from the GitLab projects page at Settings > CI/CD, in the Variables section. -
In your
.gitlab-ci.yml
file, setFUZZAPI_OVERRIDES_ENV
to the variable you just created:stages: - fuzz include: - template: API-Fuzzing.gitlab-ci.yml variables: FUZZAPI_PROFILE: Quick-10 FUZZAPI_OPENAPI: test-api-specification.json FUZZAPI_TARGET_URL: http://test-deployment/ FUZZAPI_OVERRIDES_ENV: $TEST_API_BEARERAUTH
-
To validate that authentication is working, run an API fuzzing test and review the fuzzing logs and the test API's application logs.
Token generated at test runtime
If the bearer token must be generated and doesn't expire during testing, you can provide to API fuzzing a file containing the token. A prior stage and job, or part of the API fuzzing job, can generate this file.
API fuzzing expects to receive a JSON file with the following structure:
{
"headers" : {
"Authorization" : "Bearer dXNlcm5hbWU6cGFzc3dvcmQ="
}
}
This file can be generated by a prior stage and provided to API fuzzing through the
FUZZAPI_OVERRIDES_FILE
CI/CD variable.
Set FUZZAPI_OVERRIDES_FILE
in your .gitlab-ci.yml
file:
stages:
- fuzz
include:
- template: API-Fuzzing.gitlab-ci.yml
variables:
FUZZAPI_PROFILE: Quick
FUZZAPI_OPENAPI: test-api-specification.json
FUZZAPI_TARGET_URL: http://test-deployment/
FUZZAPI_OVERRIDES_FILE: output/api-fuzzing-overrides.json
To validate that authentication is working, run an API fuzzing test and review the fuzzing logs and the test API's application logs.
Token has short expiration
If the bearer token must be generated and expires prior to the scan's completion, you can provide a program or script for the API fuzzer to execute on a provided interval. The provided script runs in an Alpine Linux container that has Python 3 and Bash installed. If the Python script requires additional packages, it must detect this and install the packages at runtime.
The script must create a JSON file containing the bearer token in a specific format:
{
"headers" : {
"Authorization" : "Bearer dXNlcm5hbWU6cGFzc3dvcmQ="
}
}
You must provide three CI/CD variables, each set for correct operation:
-
FUZZAPI_OVERRIDES_FILE
: JSON file the provided command generates. -
FUZZAPI_OVERRIDES_CMD
: Command that generates the JSON file. -
FUZZAPI_OVERRIDES_INTERVAL
: Interval (in seconds) to run command.
For example:
stages:
- fuzz
include:
- template: API-Fuzzing.gitlab-ci.yml
variables:
FUZZAPI_PROFILE: Quick-10
FUZZAPI_OPENAPI: test-api-specification.json
FUZZAPI_TARGET_URL: http://test-deployment/
FUZZAPI_OVERRIDES_FILE: output/api-fuzzing-overrides.json
FUZZAPI_OVERRIDES_CMD: renew_token.py
FUZZAPI_OVERRIDES_INTERVAL: 300
To validate that authentication is working, run an API fuzzing test and review the fuzzing logs and the test API's application logs.
API fuzzing profiles
GitLab provides the configuration file
gitlab-api-fuzzing-config.yml
.
It contains several testing profiles that perform a specific numbers of tests. The runtime of each
profile increases as the number of tests increases.
Profile | Fuzz Tests (per parameter) |
---|---|
Quick-10 | 10 |
Medium-20 | 20 |
Medium-50 | 50 |
Long-100 | 100 |
Available CI/CD variables
CI/CD variable | Description |
---|---|
SECURE_ANALYZERS_PREFIX |
Specify the Docker registry base address from which to download the analyzer. |
FUZZAPI_VERSION |
Specify API Fuzzing container version. Defaults to latest . |
FUZZAPI_TARGET_URL |
Base URL of API testing target. |
FUZZAPI_CONFIG |
Deprecated in GitLab 13.12, replaced with default .gitlab/gitlab-api-fuzzing-config.yml . API Fuzzing configuration file. |
FUZZAPI_PROFILE |
Configuration profile to use during testing. Defaults to Quick-10 . |
FUZZAPI_EXCLUDE_PATHS |
Exclude API URL paths from testing. |
FUZZAPI_OPENAPI |
OpenAPI Specification file or URL. |
FUZZAPI_OPENAPI_RELAXED_VALIDATION |
Relax document validation. Default is disabled. Introduced in GitLab 14.7. |
FUZZAPI_HAR |
HTTP Archive (HAR) file. |
FUZZAPI_POSTMAN_COLLECTION |
Postman Collection file. |
FUZZAPI_POSTMAN_COLLECTION_VARIABLES |
Path to a JSON file to extract Postman variable values. |
FUZZAPI_OVERRIDES_FILE |
Path to a JSON file containing overrides. |
FUZZAPI_OVERRIDES_ENV |
JSON string containing headers to override. |
FUZZAPI_OVERRIDES_CMD |
Overrides command. |
FUZZAPI_OVERRIDES_INTERVAL |
How often to run overrides command in seconds. Defaults to 0 (once). |
FUZZAPI_HTTP_USERNAME |
Username for HTTP authentication. |
FUZZAPI_HTTP_PASSWORD |
Password for HTTP authentication. |
Overrides
API Fuzzing provides a method to add or override specific items in your request, for example:
- Headers
- Cookies
- Query string
- Form data
- JSON nodes
- XML nodes
You can use this to inject semantic version headers, authentication, and so on. The authentication section includes examples of using overrides for that purpose.
Overrides use a JSON document, where each type of override is represented by a JSON object:
{
"headers": {
"header1": "value",
"header2": "value"
},
"cookies": {
"cookie1": "value",
"cookie2": "value"
},
"query": {
"query-string1": "value",
"query-string2": "value"
},
"body-form": {
"form-param1": "value",
"form-param2": "value"
},
"body-json": {
"json-path1": "value",
"json-path2": "value"
},
"body-xml" : {
"xpath1": "value",
"xpath2": "value"
}
}
Example of setting a single header:
{
"headers": {
"Authorization": "Bearer dXNlcm5hbWU6cGFzc3dvcmQ="
}
}
Example of setting both a header and cookie:
{
"headers": {
"Authorization": "Bearer dXNlcm5hbWU6cGFzc3dvcmQ="
},
"cookies": {
"flags": "677"
}
}
Example usage for setting a body-form
override:
{
"body-form": {
"username": "john.doe"
}
}
The override engine uses body-form
when the request body has only form-data content.
Example usage for setting a body-json
override:
{
"body-json": {
"$.credentials.access-token": "iddqd!42.$"
}
}
Note that each JSON property name in the object body-json
is set to a JSON Path
expression. The JSON Path expression $.credentials.access-token
identifies the node to be
overridden with the value iddqd!42.$
. The override engine uses body-json
when the request body
has only JSON content.
For example, if the body is set to the following JSON:
{
"credentials" : {
"username" :"john.doe",
"access-token" : "non-valid-password"
}
}
It is changed to:
{
"credentials" : {
"username" :"john.doe",
"access-token" : "iddqd!42.$"
}
}
Here's an example for setting a body-xml
override. The first entry overrides an XML attribute and
the second entry overrides an XML element:
{
"body-xml" : {
"/credentials/@isEnabled": "true",
"/credentials/access-token/text()" : "iddqd!42.$"
}
}
Note that each JSON property name in the object body-xml
is set to an
XPath v2
expression. The XPath expression /credentials/@isEnabled
identifies the attribute node to override
with the value true
. The XPath expression /credentials/access-token/text()
identifies the
element node to override with the value iddqd!42.$
. The override engine uses body-xml
when the
request body has only XML
content.
For example, if the body is set to the following XML:
<credentials isEnabled="false">
<username>john.doe</username>
<access-token>non-valid-password</access-token>
</credentials>
It is changed to:
<credentials isEnabled="true">
<username>john.doe</username>
<access-token>iddqd!42.$</access-token>
</credentials>
You can provide this JSON document as a file or environment variable. You may also provide a command to generate the JSON document. The command can run at intervals to support values that expire.
Using a file
To provide the overrides JSON as a file, the FUZZAPI_OVERRIDES_FILE
CI/CD variable is set. The path is relative to the job current working directory.
Here's an example .gitlab-ci.yml
:
stages:
- fuzz
include:
- template: API-Fuzzing.gitlab-ci.yml
variables:
FUZZAPI_PROFILE: Quick
FUZZAPI_OPENAPI: test-api-specification.json
FUZZAPI_TARGET_URL: http://test-deployment/
FUZZAPI_OVERRIDES_FILE: output/api-fuzzing-overrides.json
Using a CI/CD variable
To provide the overrides JSON as a CI/CD variable, use the FUZZAPI_OVERRIDES_ENV
variable.
This allows you to place the JSON as variables that can be masked and protected.
In this example .gitlab-ci.yml
, the FUZZAPI_OVERRIDES_ENV
variable is set directly to the JSON:
stages:
- fuzz
include:
- template: API-Fuzzing.gitlab-ci.yml
variables:
FUZZAPI_PROFILE: Quick
FUZZAPI_OPENAPI: test-api-specification.json
FUZZAPI_TARGET_URL: http://test-deployment/
FUZZAPI_OVERRIDES_ENV: '{"headers":{"X-API-Version":"2"}}'
In this example .gitlab-ci.yml
, the SECRET_OVERRIDES
variable provides the JSON. This is a
group or instance level CI/CD variable defined in the UI:
stages:
- fuzz
include:
- template: API-Fuzzing.gitlab-ci.yml
variables:
FUZZAPI_PROFILE: Quick
FUZZAPI_OPENAPI: test-api-specification.json
FUZZAPI_TARGET_URL: http://test-deployment/
FUZZAPI_OVERRIDES_ENV: $SECRET_OVERRIDES
Using a command
If the value must be generated or regenerated on expiration, you can provide a program or script for the API fuzzer to execute on a specified interval. The provided script runs in an Alpine Linux container that has Python 3 and Bash installed. If the Python script requires additional packages, it must detect this and install the packages at runtime. The script creates the overrides JSON file as defined above.
You must provide three CI/CD variables, each set for correct operation:
-
FUZZAPI_OVERRIDES_FILE
: File generated by the provided command. -
FUZZAPI_OVERRIDES_CMD
: Command to generate JSON file. -
FUZZAPI_OVERRIDES_INTERVAL
: Interval in seconds to run command.
stages:
- fuzz
include:
- template: API-Fuzzing.gitlab-ci.yml
variables:
FUZZAPI_PROFILE: Quick
FUZZAPI_OPENAPI: test-api-specification.json
FUZZAPI_TARGET_URL: http://test-deployment/
FUZZAPI_OVERRIDES_FILE: output/api-fuzzing-overrides.json
FUZZAPI_OVERRIDES_CMD: renew_token.py
FUZZAPI_OVERRIDES_INTERVAL: 300
Exclude Paths
- Introduced in GitLab 14.0.
When testing an API it can be useful to exclude certain paths. For example, you might exclude testing of an authentication service or an older version of the API. To exclude paths, use the FUZZAPI_EXCLUDE_PATHS
CI/CD variable . This variable is specified in your .gitlab-ci.yml
file. To exclude multiple paths, separate entries using the ;
character. In the provided paths you can use a single character wildcard ?
and *
for a multiple character wildcard.
To verify the paths are excluded, review the Tested Operations
and Excluded Operations
portion of the job output. You should not see any excluded paths listed under Tested Operations
.
2021-05-27 21:51:08 [INF] API Security: --[ Tested Operations ]-------------------------
2021-05-27 21:51:08 [INF] API Security: 201 POST http://target:7777/api/users CREATED
2021-05-27 21:51:08 [INF] API Security: ------------------------------------------------
2021-05-27 21:51:08 [INF] API Security: --[ Excluded Operations ]-----------------------
2021-05-27 21:51:08 [INF] API Security: GET http://target:7777/api/messages
2021-05-27 21:51:08 [INF] API Security: POST http://target:7777/api/messages
2021-05-27 21:51:08 [INF] API Security: ------------------------------------------------
Examples of excluding paths
This example excludes the /auth
resource. This does not exclude child resources (/auth/child
).
variables:
FUZZAPI_EXCLUDE_PATHS=/auth
To exclude /auth
, and child resources (/auth/child
), we use a wildcard.
variables:
FUZZAPI_EXCLUDE_PATHS=/auth*
To exclude multiple paths we can use the ;
character. In this example we exclude /auth*
and /v1/*
.
variables:
FUZZAPI_EXCLUDE_PATHS=/auth*;/v1/*
Header Fuzzing
Header fuzzing is disabled by default due to the high number of false positives that occur with many technology stacks. When header fuzzing is enabled, you must specify a list of headers to include in fuzzing.
Each profile in the default configuration file has an entry for GeneralFuzzingCheck
. This check
performs header fuzzing. Under the Configuration
section, you must change the HeaderFuzzing
and
Headers
settings to enable header fuzzing.
This snippet shows the Quick-10
profile's default configuration with header fuzzing disabled:
- Name: Quick-10
DefaultProfile: Empty
Routes:
- Route: *Route0
Checks:
- Name: FormBodyFuzzingCheck
Configuration:
FuzzingCount: 10
UnicodeFuzzing: true
- Name: GeneralFuzzingCheck
Configuration:
FuzzingCount: 10
UnicodeFuzzing: true
HeaderFuzzing: false
Headers:
- Name: JsonFuzzingCheck
Configuration:
FuzzingCount: 10
UnicodeFuzzing: true
- Name: XmlFuzzingCheck
Configuration:
FuzzingCount: 10
UnicodeFuzzing: true
HeaderFuzzing
is a boolean that turns header fuzzing on and off. The default setting is false
for off. To turn header fuzzing on, change this setting to true
:
- Name: GeneralFuzzingCheck
Configuration:
FuzzingCount: 10
UnicodeFuzzing: true
HeaderFuzzing: true
Headers:
Headers
is a list of headers to fuzz. Only headers listed are fuzzed. To fuzz a header used by
your APIs, add an entry for it using the syntax - Name: HeaderName
. For example, to fuzz a
custom header X-Custom
, add - Name: X-Custom
:
- Name: GeneralFuzzingCheck
Configuration:
FuzzingCount: 10
UnicodeFuzzing: true
HeaderFuzzing: true
Headers:
- Name: X-Custom
You now have a configuration to fuzz the header X-Custom
. Use the same notation to list additional
headers:
- Name: GeneralFuzzingCheck
Configuration:
FuzzingCount: 10
UnicodeFuzzing: true
HeaderFuzzing: true
Headers:
- Name: X-Custom
- Name: X-AnotherHeader
Repeat this configuration for each profile as needed.
Running your first scan
When configured correctly, a CI/CD pipeline contains a fuzz
stage and an apifuzzer_fuzz
or
apifuzzer_fuzz_dnd
job. The job only fails when an invalid configuration is provided. During
normal operation, the job always succeeds even if faults are identified during fuzz testing.
Faults are displayed on the Security pipeline tab with the suite name. When testing against the repositories default branch, the fuzzing faults are also shown on the Security & Compliance's Vulnerability Report page.
To prevent an excessive number of reported faults, the API fuzzing scanner limits the number of faults it reports.
Viewing fuzzing faults
The API Fuzzing analyzer produces a JSON report that is collected and used to populate the faults into GitLab vulnerability screens. Fuzzing faults show up as vulnerabilities with a severity of Unknown.
The faults that API fuzzing finds require manual investigation and aren't associated with a specific vulnerability type. They require investigation to determine if they are a security issue, and if they should be fixed. See handling false positives for information about configuration changes you can make to limit the number of false positives reported.
View details of an API Fuzzing vulnerability
Introduced in GitLab 13.7.
Faults detected by API Fuzzing occur in the live web application, and require manual investigation to determine if they are vulnerabilities. Fuzzing faults are included as vulnerabilities with a severity of Unknown. To facilitate investigation of the fuzzing faults, detailed information is provided about the HTTP messages sent and received along with a description of the modification(s) made.
Follow these steps to view details of a fuzzing fault:
-
You can view faults in a project, or a merge request:
- In a project, go to the project's {shield} Security & Compliance > Vulnerability Report page. This page shows all vulnerabilities from the default branch only.
- In a merge request, go the merge request's Security section and click the Expand button. API Fuzzing faults are available in a section labeled API Fuzzing detected N potential vulnerabilities. Click the title to display the fault details.
-
Select the fault's title to display the fault's details. The table below describes these details.
Field Description Description Description of the fault including what was modified. Project Namespace and project in which the vulnerability was detected. Method HTTP method used to detect the vulnerability. URL URL at which the vulnerability was detected. Request The HTTP request that caused the fault. Unmodified Response Response from an unmodified request. This is what a normal working response looks like. Actual Response Response received from fuzzed request. Evidence How we determined a fault occurred. Identifiers The fuzzing check used to find this fault. Severity Severity of the finding is always Unknown. Scanner Type Scanner used to perform testing.
Security Dashboard
Fuzzing faults show up as vulnerabilities with a severity of Unknown. The Security Dashboard is a good place to get an overview of all the security vulnerabilities in your groups, projects and pipelines. For more information, see the Security Dashboard documentation.
Interacting with the vulnerabilities
Fuzzing faults show up as vulnerabilities with a severity of Unknown. Once a fault is found, you can interact with it. Read more on how to address the vulnerabilities.
Handling False Positives
False positives can be handled in two ways:
- Turn off the Check producing the false positive. This prevents the check from generating any faults. Example checks are the JSON Fuzzing Check, and Form Body Fuzzing Check.
- Fuzzing checks have several methods of detecting when a fault is identified, called Asserts. Asserts can also be turned off and configured. For example, the API fuzzer by default uses HTTP status codes to help identify when something is a real issue. If an API returns a 500 error during testing, this creates a fault. This isn't always desired, as some frameworks return 500 errors often.
Turn off a Check
Checks perform testing of a specific type and can be turned on and off for specific configuration
profiles. The default configuration file defines several profiles that you
can use. The profile definition in the configuration file lists all the checks that are active
during a scan. To turn off a specific check, remove it from the profile definition in the
configuration file. The profiles are defined in the Profiles
section of the configuration file.
Example profile definition:
Profiles:
- Name: Quick-10
DefaultProfile: Quick
Routes:
- Route: *Route0
Checks:
- Name: FormBodyFuzzingCheck
Configuration:
FuzzingCount: 10
UnicodeFuzzing: true
- Name: GeneralFuzzingCheck
Configuration:
FuzzingCount: 10
UnicodeFuzzing: true
- Name: JsonFuzzingCheck
Configuration:
FuzzingCount: 10
UnicodeFuzzing: true
- Name: XmlFuzzingCheck
Configuration:
FuzzingCount: 10
UnicodeFuzzing: true
To turn off the General Fuzzing Check you can remove these lines:
- Name: GeneralFuzzingCheck
Configuration:
FuzzingCount: 10
UnicodeFuzzing: true
This results in the following YAML:
- Name: Quick-10
DefaultProfile: Quick
Routes:
- Route: *Route0
Checks:
- Name: FormBodyFuzzingCheck
Configuration:
FuzzingCount: 10
UnicodeFuzzing: true
- Name: JsonFuzzingCheck
Configuration:
FuzzingCount: 10
UnicodeFuzzing: true
- Name: XmlFuzzingCheck
Configuration:
FuzzingCount: 10
UnicodeFuzzing: true
Turn off an Assertion for a Check
Assertions detect faults in tests produced by checks. Many checks support multiple Assertions such
as Log Analysis, Response Analysis, and Status Code. When a fault is found, the Assertion used is
provided. To identify which Assertions are on by default, see the Checks default configuration in
the configuration file. The section is called Checks
.
This example shows the FormBody Fuzzing Check:
Checks:
- Name: FormBodyFuzzingCheck
Configuration:
FuzzingCount: 30
UnicodeFuzzing: true
Assertions:
- Name: LogAnalysisAssertion
- Name: ResponseAnalysisAssertion
- Name: StatusCodeAssertion
Here you can see three Assertions are on by default. A common source of false positives is
StatusCodeAssertion
. To turn it off, modify its configuration in the Profiles
section. This
example provides only the other two Assertions (LogAnalysisAssertion
,
ResponseAnalysisAssertion
). This prevents FormBodyFuzzingCheck
from using StatusCodeAssertion
:
Profiles:
- Name: Quick-10
DefaultProfile: Quick
Routes:
- Route: *Route0
Checks:
- Name: FormBodyFuzzingCheck
Configuration:
FuzzingCount: 10
UnicodeFuzzing: true
Assertions:
- Name: LogAnalysisAssertion
- Name: ResponseAnalysisAssertion
- Name: GeneralFuzzingCheck
Configuration:
FuzzingCount: 10
UnicodeFuzzing: true
- Name: JsonFuzzingCheck
Configuration:
FuzzingCount: 10
UnicodeFuzzing: true
- Name: XmlInjectionCheck
Configuration:
FuzzingCount: 10
UnicodeFuzzing: true
Running API fuzzing in an offline environment
For self-managed GitLab instances in an environment with limited, restricted, or intermittent access to external resources through the internet, some adjustments are required for the Web API Fuzz testing job to successfully run.
Steps:
- Host the Docker image in a local container registry.
- Set the
SECURE_ANALYZERS_PREFIX
to the local container registry.
The Docker image for API Fuzzing must be pulled (downloaded) from the public registry and then pushed (imported) into a local registry. The GitLab container registry can be used to locally host the Docker image. This process can be performed using a special template. See loading Docker images onto your offline host for instructions.
Once the Docker image is hosted locally, the SECURE_ANALYZERS_PREFIX
variable is set with the location of the local registry. The variable must be set such that concatenating /api-fuzzing:1
results in a valid image location.
For example, the below line sets a registry for the image registry.gitlab.com/gitlab-org/security-products/analyzers/api-fuzzing:1
:
SECURE_ANALYZERS_PREFIX: "registry.gitlab.com/gitlab-org/security-products/analyzers"
NOTE:
Setting SECURE_ANALYZERS_PREFIX
changes the Docker image registry location for all GitLab Secure templates.
For more information, see Offline environments.
Troubleshooting
http://127.0.0.1:5000' to become available
Error waiting for API Security 'A bug exists in versions of the API Fuzzing analyzer prior to v1.6.196 that can cause a background process to fail under certain conditions. The solution is to update to a newer version of the DAST API analyzer.
The version information can be found in the job details for the apifuzzer_fuzz
job.
If the issue is occurring with versions v1.6.196 or greater, please contact Support and provide the following information:
- Reference this troubleshooting section and ask for the issue to be escalated to the Dynamic Analysis Team.
- The full console output of the job.
- The
gl-api-security-scanner.log
file available as a job artifact. In the right-hand panel of the job details page, select the Browse button. - The
apifuzzer_fuzz
job definition from your.gitlab-ci.yml
file.
Error, the OpenAPI document is not valid. Errors were found during validation of the document using the published OpenAPI schema
At the start of an API Fuzzing job the OpenAPI Specification is validated against the published schema. This error is shown when the provided OpenAPI Specification has validation errors. Errors can be introduced when creating an OpenAPI Specification manually, and also when the schema is generated.
For OpenAPI Specifications that are generated automatically validation errors are often the result of missing code annotations.
Error message
- In GitLab 13.11 and later,
Error, the OpenAPI document is not valid. Errors were found during validation of the document using the published OpenAPI schema
OpenAPI 2.0 schema validation error ...
OpenAPI 3.0.x schema validation error ...
Solution
For generated OpenAPI Specifications
- Identify the validation errors.
- Use the Swagger Editor to identify validation problems in your specification. The visual nature of the Swagger Editor makes it easier to understand what needs to change.
- Alternatively, you can check the log output and look for schema validation warnings. They are prefixed with messages such as
OpenAPI 2.0 schema validation error
orOpenAPI 3.0.x schema validation error
. Each failed validation provides extra information aboutlocation
anddescription
. Note that JSON Schema validation messages might not be easy to understand. This is why we recommend the use of editors to validate schema documents.
- Review the documentation for the OpenAPI generation your framework/tech stack is using. Identify the changes needed to produce a correct OpenAPI document.
- Once the validation issues are resolved, re-run your pipeline.
For manually created OpenAPI Specifications
- Identify the validation errors.
- The simplest solution is to use a visual tool to edit and validate the OpenAPI document. For example the Swagger Editor highlights schema errors and possible solutions.
- Alternatively, you can check the log output and look for schema validation warnings. They are prefixed with messages such as
OpenAPI 2.0 schema validation error
orOpenAPI 3.0.x schema validation error
. Each failed validation provides extra information aboutlocation
anddescription
. Correct each of the validation failures and then resubmit the OpenAPI doc. Note that JSON Schema validation message might not be easy to understand. This is why we recommend the use of editors to validate document.
- Once the validation issues are resolved, re-run your pipeline.
Failed to start scanner session (version header not found)
The API Fuzzing engine outputs an error message when it cannot establish a connection with the scanner application component. The error message is shown in the job output window of the apifuzzer_fuzz
job. A common cause of this issue is changing the FUZZAPI_API
variable from its default.
Error message
- In GitLab 13.11 and later,
Failed to start scanner session (version header not found).
- In GitLab 13.10 and earlier,
API Security version header not found. Are you sure that you are connecting to the API Security server?
.
Solution
- Remove the
FUZZAPI_API
variable from the.gitlab-ci.yml
file. The value will be inherited from the API Fuzzing CI/CD template. We recommend this method instead of manually setting a value. - If removing the variable is not possible, check to see if this value has changed in the latest version of the API Fuzzing CI/CD template. If so, update the value in the
.gitlab-ci.yml
file.
Application cannot determine the base URL for the target API
The API Fuzzing analyzer outputs an error message when it cannot determine the target API after inspecting the OpenAPI document. This error message is shown when the target API has not been set in the .gitlab-ci.yml
file, it is not available in the environment_url.txt
file, and it could not be computed using the OpenAPI document.
There is an order of precedence in which the API Fuzzing analyzer tries to get the target API when checking the different sources. First, it will try to use the FUZZAPI_TARGET_URL
. If the environment variable has not been set, then the API Fuzzing analyzer will attempt to use the environment_url.txt
file. If there is no file environment_url.txt
, the API Fuzzing analyzer will then use the OpenAPI document contents and the URL provided in FUZZAPI_OPENAPI
(if a URL is provided) to try to compute the target API.
The best-suited solution will depend on whether or not your target API changes for each deployment. In static environments, the target API is the same for each deployment, in this case please refer to the static environment solution. If the target API changes for each deployment a dynamic environment solution should be applied.
Static environment solution
This solution is for pipelines in which the target API URL doesn't change (is static).
Add environmental variable
For environments where the target API remains the same, we recommend you specify the target URL by using the FUZZAPI_TARGET_URL
environment variable. In your .gitlab-ci.yml
file, add a variable FUZZAPI_TARGET_URL
. The variable must be set to the base URL of API testing target. For example:
include:
- template: API-Fuzzing.gitlab-ci.yml
variables:
FUZZAPI_TARGET_URL: http://test-deployment/
FUZZAPI_OPENAPI: test-api-specification.json
Dynamic environment solutions
In a dynamic environment your target API changes for each different deployment. In this case, there is more than one possible solution, we recommend to use the environment_url.txt
file when dealing with dynamic environments.
Use environment_url.txt
To support dynamic environments in which the target API URL changes during each pipeline, API Fuzzing supports the use of an environment_url.txt
file that contains the URL to use. This file is not checked into the repository, instead it's created during the pipeline by the job that deploys the test target and collected as an artifact that can be used by later jobs in the pipeline. The job that creates the environment_url.txt
file must run before the API Fuzzing job.
- Modify the test target deployment job adding the base URL in an
environment_url.txt
file at the root of your project. - Modify the test target deployment job collecting the
environment_url.txt
as an artifact.
Example:
deploy-test-target:
script:
# Perform deployment steps
# Create environment_url.txt (example)
- echo http://${CI_PROJECT_ID}-${CI_ENVIRONMENT_SLUG}.example.org > environment_url.txt
artifacts:
paths:
- environment_url.txt
Use OpenAPI with an invalid schema
There are cases where the document is autogenerated with an invalid schema or cannot be edited manually in a timely manner. In those scenarios, the API Security is able to perform a relaxed validation by setting the variable FUZZAPI_OPENAPI_RELAXED_VALIDATION
. We recommend providing a fully compliant OpenAPI document to prevent unexpected behaviors.
Edit a non-compliant OpenAPI file
To detect and correct elements that don't comply with the OpenAPI specifications, we recommend using an editor. An editor commonly provides document validation, and suggestions to create a schema-compliant OpenAPI document. Suggested editors include:
Editor | OpenAPI 2.0 | OpenAPI 3.0.x | OpenAPI 3.1.x |
---|---|---|---|
Swagger Editor | {check-circle} YAML, JSON | {check-circle} YAML, JSON | {dotted-circle} YAML, JSON |
Stoplight Studio | {check-circle} YAML, JSON | {check-circle} YAML, JSON | {check-circle} YAML, JSON |
If your OpenAPI document is generated manually, load your document in the editor and fix anything that is non-compliant. If your document is generated automatically, load it in your editor to identify the issues in the schema, then go to the application and perform the corrections based on the framework you are using.
Enable OpenAPI relaxed validation
Relaxed validation is meant for cases when the OpenAPI document cannot meet OpenAPI specifications, but it still has enough content to be consumed by different tools. A validation is performed but less strictly in regards to document schema.
API Security can still try to consume an OpenAPI document that does not fully comply with OpenAPI specifications. To instruct API Security to perform a relaxed validation, set the variable FUZZAPI_OPENAPI_RELAXED_VALIDATION
to any value, for example:
stages:
- fuzz
include:
- template: API-Fuzzing.gitlab-ci.yml
variables:
FUZZAPI_PROFILE: Quick-10
FUZZAPI_TARGET_URL: http://test-deployment/
FUZZAPI_OPENAPI: test-api-specification.json
FUZZAPI_OPENAPI_RELAXED_VALIDATION: On
Get support or request an improvement
To get support for your particular problem please use the getting help channels.
The GitLab issue tracker on GitLab.com is the right place for bugs and feature proposals about API Security and API Fuzzing.
Please use ~"Category:API Security"
label when opening a new issue regarding API fuzzing to ensure it is quickly reviewed by the right people. Please refer to our review response SLO to understand when you should receive a response.
Search the issue tracker for similar entries before submitting your own, there's a good chance somebody else had the same issue or feature proposal. Show your support with an award emoji and or join the discussion.
When experiencing a behavior not working as expected, consider providing contextual information:
- GitLab version if using a self-managed instance.
-
.gitlab-ci.yml
job definition. - Full job console output.
- Scanner log file available as a job artifact named
gl-api-security-scanner.log
.
WARNING: Sanitize data attached to a support issue. Please remove sensitive information, including: credentials, passwords, tokens, keys, and secrets.
Glossary
- Assert: Assertions are detection modules used by checks to trigger a fault. Many assertions have configurations. A check can use multiple Assertions. For example, Log Analysis, Response Analysis, and Status Code are common Assertions used together by checks. Checks with multiple Assertions allow them to be turned on and off.
- Check: Performs a specific type of test, or performed a check for a type of vulnerability. For example, the JSON Fuzzing Check performs fuzz testing of JSON payloads. The API fuzzer is comprised of several checks. Checks can be turned on and off in a profile.
- Fault: During fuzzing, a failure identified by an Assert is called a fault. Faults are investigated to determine if they are a security vulnerability, a non-security issue, or a false positive. Faults don't have a known vulnerability type until they are investigated. Example vulnerability types are SQL Injection and Denial of Service.
- Profile: A configuration file has one or more testing profiles, or sub-configurations. You may have a profile for feature branches and another with extra testing for a main branch.